AP® PHYSICS 2 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

 $e = 1.60 \times 10^{-19} \text{ C}$ Electron charge magnitude,

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

 $c = 3.00 \times 10^8 \text{ m/s}$ Speed of light,

Universal gravitational

constant,

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

Acceleration due to gravity

 $g = 9.8 \text{ m/s}^2$ at Earth's surface,

1 unified atomic mass unit,

$$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$$

Planck's constant.

$$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$$

$$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$$

Vacuum permittivity,

$$\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 / \mathrm{N} \cdot \mathrm{m}^2$$

Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Vacuum permeability,

$$\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$$

Magnetic constant, $k' = \mu_0/4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$

1 atmosphere pressure,

$$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$$

UNIT SYMBOLS	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
	second,	S	newton,	N	volt,	V	degree Celsius,	°C
	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	Н		·

PREFIXES					
Factor	Prefix	Symbol			
10 ¹²	tera	T			
10 ⁹	giga	G			
10 ⁶	mega	M			
10 ³	kilo	k			
10^{-2}	centi	С			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10^{-9}	nano	n			
10^{-12}	pico	p			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- The frame of reference of any problem is assumed to be inertial unless
- II. In all situations, positive work is defined as work done on a system.
- The direction of current is conventional current: the direction in which positive charge would drift.
- IV. Assume all batteries and meters are ideal unless otherwise stated.
- V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
- VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

AP® PHYSICS 2 EQUATIONS

MECHANICS

MEC	LHANICS
$v_x = v_{x0} + a_x t$	a = acceleration
x x0 x	d = distance
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	E = energy
$x = x_0 + v_{x0}t + \frac{1}{2}u_xt$	F = force
2 2	f = frequency
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	h = height

$$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$$
 $h = \text{height}$

$$I = \text{rotational inertia}$$

$$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$$
 $K = \text{kinetic energy}$

$$k = \text{spring constant}$$

$$\left| \vec{F}_f \right| \leq \mu |\vec{F}_n| \qquad \qquad L = \text{angular momentum}$$

$$\ell = \text{length}$$

$$a_c = \frac{v^2}{r}$$
 $m = \text{mass}$
 $P = \text{power}$
 $p = \text{momentum}$

$$\vec{n} = m\vec{i}$$
 $r = \text{radius or separation}$

$$T = \text{period}$$
 $t = \text{time}$

$$U = \text{potential energy}$$

$$v = \text{speed}$$

$$K = \frac{1}{2}mv^2$$
 $v = \text{speed}$ $W = \text{work done on a system}$

$$\Delta E = W = F_{\parallel} d = F d \cos \theta$$

$$x = \text{position}$$

$$\alpha = \text{angular acceleration}$$

$$\Delta E = W = F_{\parallel} d = F d \cos \theta$$
 $\alpha = \text{angular acceleration}$
 $\mu = \text{coefficient of friction}$

$$P = \frac{\Delta E}{\Delta t}$$
 $\theta = \text{angle}$ $\tau = \text{torque}$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$
 $\omega = \text{angular speed}$

$$\omega = \omega_0 + \alpha t \qquad U_s = \frac{1}{2}kx^2$$

$$x = A\cos(\omega t) = A\cos(2\pi f t)$$
 $\Delta U_g = mg \Delta y$

$$x_{cm} = \frac{\sum m_i x_i}{\sum m_i} \qquad T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$$
 $T_s = 2\pi \sqrt{\frac{m}{k}}$

$$au = r_{\perp}F = rF\sin\theta$$

$$T_p = 2\pi\sqrt{\frac{\ell}{g}}$$

$$L = I\omega$$

$$\Delta L = \tau \Delta t$$

$$\left|\vec{F}_g\right| = G\frac{m_1 n}{r^2}$$

$$T_p = 2\pi \sqrt{\frac{1}{\sqrt{1 + \frac{1}{2}}}}$$

$$\Delta L = \tau \, \Delta t \qquad \left| \vec{F}_g \right| = G \frac{m_1 m_2}{r^2}$$

$$\vec{g} = \frac{1}{2}I\omega^2 \qquad \qquad \vec{g} = \frac{\vec{F}_g}{m}$$

$$\left| \vec{F}_s \right| = k |\vec{x}| \qquad U_G = -\frac{Gm_1 m_2}{r}$$

ELECTRICITY AND MAGNETISM

$$\begin{split} \left|\vec{F}_E\right| &= \frac{1}{4\pi\varepsilon_0} \frac{\left|q_1q_2\right|}{r^2} & A = \text{ area} \\ B &= \text{ magnetic field} \\ C &= \text{ capacitance} \\ d &= \text{ distance} \\ E &= \text{ electric field} \\ \left|\vec{E}\right| &= \frac{1}{4\pi\varepsilon_0} \frac{\left|q\right|}{r^2} & \mathcal{E} &= \text{ emf} \\ K &= \text{ force} \\ I &= \text{ current} \\ \ell &= \text{ length} \\ V &= \frac{1}{4\pi\varepsilon_0} \frac{q}{r} & P &= \text{ power} \\ Q &= \text{ charge} \end{split}$$

$$V = \frac{1}{4\pi\varepsilon_0} \frac{1}{r}$$
 $Q = \text{charge}$ $q = \text{point charge}$ $|\vec{E}| = \left|\frac{\Delta V}{\Delta r}\right|$ $R = \text{resistance}$ $r = \text{separation}$

$$|E| = \left| \frac{\Delta r}{\Delta r} \right|$$
 $r = \text{separation}$ $t = \text{time}$ $U = \text{potential (stored)}$

$$C = \kappa \varepsilon_0 \frac{A}{d}$$
 energy $V =$ electric potential $v =$ speed

$$E = \frac{Q}{\varepsilon_0 A}$$

$$\rho = \text{resistivity}$$

$$\theta = \text{angle}$$

$$U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$$
 $\Phi = \text{flux}$

$$I = \frac{\Delta Q}{\Delta t}$$

$$\vec{F}_M = q\vec{v} \times \vec{B}$$

$$R = rac{
ho \ell}{A}$$
 $\left| ec{F}_M \right| = |q \vec{v}| |\sin \theta| |\vec{B}|$

$$P = I \Delta V$$

$$\vec{F}_M = I \vec{\ell} \times \vec{B}$$

$$I = \frac{\Delta V}{R}$$

$$R_s = \sum_{i} R_i$$

$$|\vec{F}_M| = |I\vec{\ell}| |\sin \theta| |\vec{B}|$$

$$\frac{1}{R_{\rm p}} = \sum_{i} \frac{1}{R_{i}}$$

$$\Phi_{B} = \vec{B} \cdot \vec{A}$$

$$R_p = \frac{\sum_{i} R_i}{C_p} = \sum_{i} C_i$$

$$\Phi_B = |\vec{B}| \cos \theta |\vec{A}|$$

$$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$$

$$\varepsilon = -\frac{\Delta \Phi_B}{\Delta t}$$

$$\mathcal{E} = B\ell v$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

AP® PHYSICS 2 EQUATIONS

FLUID MECHANICS AND THERMAL PHYSICS

$ \rho = \frac{m}{m} $	A = area
$ \rho = \frac{1}{V} $	F = force
	h = depth

$$P = \frac{F}{A}$$
 $k = \text{thermal conductivity}$
 $K = \text{kinetic energy}$

$$P = P_0 + \rho g h$$
 $L = \text{thickness}$

$$m = P_0 + \rho g n$$
 $m = \text{mass}$

$$F_b = \rho Vg$$
 $n = \text{number of moles}$

$$N = \text{number of molecules}$$

 $A_1v_1 = A_2v_2$ $P = \text{pressure}$

$$Q = \text{energy transferred to a}$$

$$Q = \text{energy transferred to a}$$

$$\text{system by heating}$$

$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2$$
 system by
 $T = \text{temperature}$

$$= P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2 \qquad t = \text{time}$$

$$U = \text{interv}$$

$$U = internal energy$$

 ϕ = work function

$$\frac{Q}{\Delta t} = \frac{kA \, \Delta T}{L}$$

$$V = \text{volume}$$

$$v = \text{speed}$$

$$W =$$
work done on a system

$$PV = nRT = Nk_BT$$
 $y = \text{height}$
 $\rho = \text{density}$

$$K = \frac{3}{2}k_BT$$

$$W = -P\Delta V$$

$$\Delta U = Q + W$$

 $E = mc^2$

MODERN PHYSICS

$$E = hf$$
 $E = \text{energy}$
 $K_{\text{max}} = hf - \phi$ $K = \text{kinetic energy}$
 $\lambda = \frac{h}{p}$ $p = \text{momentum}$
 $\lambda = \text{wavelength}$

WAVES AND OPTICS

$$\lambda = \frac{v}{f}$$

$$d = \text{separation}$$

$$f = \text{frequency or}$$

$$focal length$$

$$n = \frac{c}{v}$$

$$h = \text{height}$$

$$L = \text{distance}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$M = \text{magnification}$$

$$\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$$

$$m = \text{an integer}$$

$$n = \text{index of}$$

$$refraction$$

$$|M| = \left| \frac{h_i}{h_o} \right| = \left| \frac{s_i}{s_o} \right|$$

$$s = \text{distance}$$

$$v = \text{speed}$$

$$\lambda = \text{wavelength}$$

$$d \sin \theta = m\lambda$$

$$d = \text{angle}$$

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
A = bh	C = circumference
	V = volume
Triangle	S = surface area
$A = \frac{1}{2}bh$	b = base
2 ***	h = height
C' 1	$\ell = length$
Circle	w = width
1	

$$A = \pi r^2$$
 $r = \text{radius}$
 $C = 2\pi r$

Rectangular solid

Right triangle

$$S = 2\pi r \ell + 2\pi r^{2}$$

$$\cos \theta = \frac{b}{c}$$
Sphere
$$\tan \theta = \frac{a}{b}$$

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

$$\theta \qquad 90^{\circ}$$