AP ${ }^{\circledR}$ PHYSICS 2 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

CONSTANTS AND CONVERSION FACTORS	
Proton mass, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$ Neutron mass, $m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$ Electron mass, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$ Avogadro's number, $N_{0}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$ Universal gas constant, $\quad R=8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ Boltzmann's constant, $k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	Electron charge magnitude,$\quad e=1.60 \times 10^{-19} \mathrm{C}$ 1 electron volt, $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$ Speed of light, $\quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ Universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}$ Acceleration due to gravity at Earth's surface, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
1 unified atomic mass unit, Planck's constant, Vacuum permittivity, Coulomb's law constant, Vacuum permeability, Magnetic constant, 1 atmosphere pressure,	$\begin{aligned} 1 \mathrm{u} & =1.66 \times 10^{-27} \mathrm{~kg}=931 \mathrm{MeV} / \mathrm{c}^{2} \\ h & =6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s} \\ h c & =1.99 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~m}=1.24 \times 10^{3} \mathrm{eV} \cdot \mathrm{~nm} \\ \varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\ k=1 / 4 \pi \varepsilon_{0} & =9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \\ \mu_{0} & =4 \pi \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A} \\ k^{\prime}=\mu_{0} / 4 \pi & =1 \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A} \\ 1 \mathrm{~atm} & =1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.0 \times 10^{5} \mathrm{~Pa} \end{aligned}$

UNIT	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
	second,	s	newton,	N	volt,	V	degree Celsius,	${ }^{\circ} \mathrm{C}$
	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	H		

PREFIXES		
Factor	Prefix	Symbol
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES									
θ	0°	30°	37°	45°	53°	60°	90°		
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1		
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0		
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞		

The following conventions are used in this exam.
I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
II. In all situations, positive work is defined as work done on a system.
III. The direction of current is conventional current: the direction in which positive charge would drift.
IV. Assume all batteries and meters are ideal unless otherwise stated.
V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

MECHANICS	ELECTRICITY AND MAGNETISM	
$\begin{array}{ll} v_{x}=v_{x 0}+a_{x} t & a=\text { acceleration } \\ x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2} & d=\text { distance } \\ E=\text { energy } \\ F=\text { force } \\ f=\text { frequency } \end{array}$	$\begin{array}{rl} \left\|\vec{F}_{E}\right\|=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left\|q_{1} q_{2}\right\|}{r^{2}} & \begin{array}{l} A \\ B \end{array}=\text { area } \\ B=\frac{\vec{F}_{E}}{q} & C=\text { capacitance field } \\ \stackrel{C}{E} & d=\text { distance } \\ E=\text { electric field } \end{array}$	
$\begin{aligned} v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) & h & =\text { height } \\ \Gamma \vec{F} \vec{F} & I & =\text { rotational inertia } \end{aligned}$	$\|\vec{E}\|=\frac{1}{4 \pi \varepsilon_{0}} \frac{\|q\|}{r^{2}} \quad \begin{aligned} \boldsymbol{\varepsilon} & =\mathrm{emf} \\ F & =\text { force } \end{aligned}$	
$\begin{array}{ll} \vec{a}=\frac{\sum \vec{F}}{m}=\frac{\vec{F}_{n e t}}{m} & \begin{array}{l} K=\text { kinetic energy } \\ k \end{array} \quad \begin{array}{l} \text { spring constant } \end{array} \end{array}$	$\begin{array}{rlrl} \Delta U_{E}=q \Delta V & I & =\text { current } \\ \ell & =\text { length } \end{array}$	
$\left\|\vec{F}_{f}\right\| \leq \mu\left\|\vec{F}_{n}\right\| \quad \begin{aligned} L & =\text { angular momentum } \\ \ell & =\text { length } \\ m & =\text { mass } \end{aligned}$	$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r} \quad \begin{array}{ll} P & =\text { power } \\ Q & =\text { charge } \\ q & =\text { point charge } \end{array}$	
$\begin{array}{ll} a_{c}=\frac{v^{2}}{r} & P=\text { power } \\ p=\text { momentum } \end{array}$	$\|\vec{E}\|=\left\|\frac{\Delta V}{\Delta r}\right\| \quad \begin{aligned} & R=\text { resistance } \\ & r=\text { separation } \end{aligned}$	
$\begin{array}{ll} \vec{p}=m \vec{v} & r=\text { radius or separation } \\ T & =\text { period } \end{array}$	$\begin{array}{ll} \Delta V=\frac{Q}{C} & t=\text { time } \\ U & =\text { potential } \text { (stored) } \end{array}$	
$\begin{array}{ll} \Delta \vec{p}=\vec{F} \Delta t & t=\text { time } \\ U & =\text { potential energy } \end{array}$	$\begin{array}{ll} C=\kappa \varepsilon_{0} \frac{A}{d} & V=\text { energy } \\ & V=\text { electric potential } \end{array}$	
$\begin{array}{ll} K=\frac{1}{2} m v^{2} & \left.\begin{array}{l} v=\text { speed } \\ W \end{array}\right)=\text { work done on a system } \\ x=\text { position } \end{array}$	$\begin{array}{rlrl} a & \begin{array}{ll} v & =\text { speed } \\ \varepsilon_{0} A & \rho \end{array} & =\text { resistivity } \\ \theta & =\text { angle } \end{array}$	
$\begin{array}{ll} \Delta E=W=F_{\\|} d=F d \cos \theta & \alpha=\text { angular acceleration } \\ & \mu=\text { coefficient of friction } \end{array}$	$U_{C}=\frac{1}{2} Q \Delta V=\frac{1}{2} C(\Delta V)^{2} \quad \Phi=\text { flux }$	
$\begin{array}{ll} P=\frac{\Delta E}{\Delta t} & \theta=\text { angle } \\ \tau=\text { torque } \end{array}$	$I=\frac{\Delta Q}{\Delta t}$	
$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \quad \omega=$ angular speed	$\begin{array}{ll} R=\frac{\vec{F}_{M}}{A t} & \mid \vec{v} \times \vec{B} \\ R & \left\|\vec{F}_{M}\right\|=\|q \vec{v} \\| \sin \theta\|\|\vec{B}\| \end{array}$	
$\omega=\omega_{0}+\alpha t \quad U_{s}=\frac{1}{2} k$	$P=I \Delta V$	
$x=A \cos (\omega t)=A \cos (2 \pi f t) \quad \Delta U_{g}=m g \Delta y$	$I=\frac{\Delta V}{R} \quad \vec{F}_{M}=\vec{I} \vec{\ell} \times \vec{B}$	
$x_{c m}=\frac{\sum m_{i} x_{i}}{\sum m_{i}} \quad T=\frac{2 \pi}{\omega}=\frac{1}{f}$	$R_{s}=\sum_{i} R_{i} \quad\left\|\vec{F}_{M}\right\|=\|\vec{I}\|\|\sin \theta\|\|\vec{B}\|$	
$\vec{\alpha}=\frac{\sum \vec{\tau}}{I}=\frac{\vec{\tau}_{\text {net }}}{I} \quad T_{s}=2 \pi \sqrt{\frac{m}{k}}$	$\begin{array}{ll} \frac{1}{R_{p}}=\sum_{i} \frac{1}{R_{i}} & \Phi_{B}=\vec{B} \cdot \vec{A} \\ & \Phi_{B}=\|\vec{B}\| \cos \theta\|\vec{A}\| \end{array}$	
$\tau=r_{\perp} F=r F \sin \theta \quad T_{p}=2 \pi \sqrt{\frac{\ell}{g}}$	$C_{p}=\sum_{i} C_{i}$	
$L=I \omega \quad\|\vec{F}\|=G$	$\frac{1}{C_{s}}=\sum_{i} \frac{1}{C_{i}} \quad \boldsymbol{\varepsilon}=-\frac{b}{\Delta t}$	
$\Delta L=\tau \Delta t \quad\left\|\vec{F}_{g}\right\|=G \frac{m_{1}{ }^{2}}{r^{2}}$	$\varepsilon=B \ell v$	
$K=\frac{1}{2} I \omega^{2} \quad \vec{g}=\frac{\vec{F}_{g}}{m}$	$B=\frac{\mu_{0}}{2 \pi} \frac{l}{r}$	
$\left\|\vec{F}_{s}\right\|=k\|\vec{x}\| \quad U_{G}=-\frac{G m_{1} m_{2}}{r}$		

AP ${ }^{\circledR}$ PHYSICS 2 EQUATIONS

FLUID MECHANICS AND THERMAL PHYSICS

$$
\begin{aligned}
& \rho=\frac{m}{V} \\
& P=\frac{F}{A} \\
& P=P_{0}+\rho g h \\
& F_{b}=\rho V g \\
& A_{1} v_{1}=A_{2} v_{2} \\
& P_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2} \\
& =P_{2}+\rho g y_{2}+\frac{1}{2} \rho v_{2}{ }^{2} \\
& \frac{Q}{\Delta t}=\frac{k A \Delta T}{L} \\
& P V=n R T=N k_{B} T \\
& K=\frac{3}{2} k_{B} T \\
& W=-P \Delta V \\
& \Delta U=Q+W \\
& A=\text { area } \\
& F=\text { force } \\
& h=\text { depth } \\
& k=\text { thermal conductivity } \\
& K=\text { kinetic energy } \\
& L=\text { thickness } \\
& m=\text { mass } \\
& n=\text { number of moles } \\
& N=\text { number of molecules } \\
& P=\text { pressure } \\
& Q=\text { energy transferred to a } \\
& \text { system by heating } \\
& T=\text { temperature } \\
& t=\text { time } \\
& U=\text { internal energy } \\
& V=\text { volume } \\
& v=\text { speed } \\
& W=\text { work done on a system } \\
& y=\text { height } \\
& \rho=\text { density } \\
& \Delta U=Q+W
\end{aligned}
$$

MODERN PHYSICS

$E=h f$
$K_{\text {max }}=h f-\phi$
$\lambda=\frac{h}{p}$
$E=m c^{2}$
$E=$ energy
$f=$ frequency
$K=$ kinetic energy
$m=$ mass
$p=$ momentum
$\lambda=$ wavelength
$\phi=$ work function

WAVES AND OPTICS

$\lambda=\frac{v}{f}$
$n=\frac{c}{v}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$\frac{1}{s_{i}}+\frac{1}{s_{o}}=\frac{1}{f}$
$|M|=\left|\frac{h_{i}}{h_{o}}\right|=\left|\frac{s_{i}}{s_{o}}\right|$
$\Delta L=m \lambda$
$d \sin \theta=m \lambda$
$d=$ separation
$f=$ frequency or focal length
$h=$ height
$L=$ distance
$M=$ magnification
$m=$ an integer
$n=$ index of
refraction
$s=$ distance
$v=$ speed
$\lambda=$ wavelength
$\theta=$ angle

GEOMETRY AND TRIGONOMETRY

Rectangle

$$
A=b h
$$

Triangle

$$
A=\frac{1}{2} b h
$$

Circle

$$
A=\pi r^{2}
$$

$$
C=2 \pi r
$$

Rectangular solid

$$
V=\ell w h
$$

Cylinder
$V=\pi r^{2} \ell$
$S=2 \pi r \ell+2 \pi r^{2}$
Sphere

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& S=4 \pi r^{2}
\end{aligned}
$$

$A=$ area
$C=$ circumference
$V=$ volume
$S=$ surface area
$b=$ base
$h=$ height
$\ell=$ length
$w=$ width
$r=$ radius

Right triangle

$$
c^{2}=a^{2}+b^{2}
$$

$$
\sin \theta=\frac{a}{c}
$$

$$
\cos \theta=\frac{b}{c}
$$

$$
\tan \theta=\frac{a}{b}
$$

